Fiber Optic Cable OTDR Basics

Posted on by FS.COM

Fiber optic communication systems have become more of a challenge for network operators to strategically and promptly keep them running at top performance in order to meet intense demands for reliable services. Many operators will go through a rigorous fiber optic training course. As the fiber optic communication systems evolve, there become newer and more complex parameters to monitor, more links to install and maintain, and more expected disruptions to track down. A new function in the primary test tool for fiber optic cable plants is the OTDR. The OTDR is classic fiber optic test equipment used to characterize an optical fiber. It is most easy to use but it is also one of the most expensive, OTDR could give you an overview of the whole system you test. OTDR may be used for estimating the fiber optic cable length and fiber optic cable overall attenuation. It may also be used to locate faults, such as breaks, bend and so on by measuring the return loss.

This new tester is of great significance for fiber optic technicians. Fiber optic patch cables are another way to provide the correct amount of light. Fiber Patch Cable also known as fiber jumper or fiber patch cord. Single-mode fiber Patch cable is primarily used for applications involving extensive distances. Multimode fiber optic patch cord, however, is the cable of choice for most common local fiber systems as the devices for multimode are far cheaper. Fiber optic patch cord is one of most commonly used components in fiber optic network. Reflected fiber optical power is a tiny fraction of transmitted pulse power that eminently varies with wavelength, cable length, fiber optic backscatter co-efficient, along with splice and connector attributes.

Measurement parameters of fiber optics under test have to be carefully selected based on mode, length and attenuation, in order to optimize fiber optic measurements with an older, manual OTDR. The optimal parameters for all fibers, in exception for the shortest optical fibers, vary inb relation to the distance of the event from the instrument. The newest OTDR instruments integrate software programs that automatically detect and configure the optimum test parameters and show results in simple formats.

Most fiber optic cables require multiple OTDR measurements by using different parameters to completely and accurately characterize their property ties. These types of tests can take more time than is acceptable during a network emergency or a lengthy commissioning process. When troubleshooting the close-range resolution versus long-range visibility, several sets of waveforms must be acquired by using different OTDR settings as often as necessary. After completing the first scan by using a short-duration optical pulse, the next scan will use a longer-duration optical pulse to provide additional optical power to test further along the optical fiber.

Newer OTDR’s incorporate built-in testing programs that automatically characterize the fiber optics in a sequential manner, starting from the instrument-to-fiber connection and working outward. Such programs automatically determine which parameters need to change, based on criteria like signal-to-noise-ratio, length, total loss and elapsed time. They may also increase the number of averages, change the filtering, or adjust the gain of the detection circuitry in order to optimize the test results for each specific cable segment. Many other software enhancements have been introduced to the acquisition , analysis and archiving of fiber optical test data, making the OTDR an even more valuable asset for technicians to meet the challenges of supporting fiber optic cable plants.

Tags: , ,
FS.COM data center switch
FS.COM LC polarity switchable patch cable
Calendar
June 2017
S M T W T F S
« May    
 123
45678910
11121314151617
18192021222324
252627282930