English

EML vs. DML: Essential Laser Technologies in 100G/200G/400G/800G Optics

Updated on Jun 9, 2022 by
8.0k

The key laser technologies used in 100G/200G/400G/800G transceivers are EML and DML. So what are the differences between them? This article will discuss the basics of EML and DML and highlight their key differences.

EML vs DML: What Are They?

DML refers to a directly modulated laser. This laser is also called a distributed-feedback laser diode (DFB) since it uses a distributed feedback structure for direct modulation. A DML uses a single chip with a simple electrical circuit design, so it can be an optimal choice for a compact circuit configuration with low power consumption.

EML refers to an electro-absorption-modulated laser. An EML diode is structurally similar to a DML one. The difference is that there is an electro-absorption modulator (EAM) integrated into a single chip. The laser diode operates under a continuous wave (CW) condition. In an EML diode, signal modulation is on the EMA section instead of the electrical section. It means that optical output signals are generated when input on/off signals are applied to the EAM section.

EML vs DML: What Are the Benefits?

  • EMLs feature low chromatic dispersion since the process of modulation will not change laser properties constantly.

  • EMLs can operate at higher modulation speeds and have a much lower chirp compared to DML.

  • EMLs are an ideal choice for high-speed and long-distance transmission because of lower dispersion in the fiber.

  • DMLs tend to be much more stable than lasers like FP abd DBR as the grating and the reflection are not only at the two ends of the cavity of the laser but are almost continuous along the cavity.

  • DMLs feature a single chip and provide a simple circuit design, making them more compact and fit into more small-sized configurations.

  • DMLs generally cost relatively less and have low power consumption since optical signals are modulated by current change in a DML.

  • Compared to Fabry-Perot lasers, DMLs have a narrower spectral line width, meaning higher modulation speed and longer transmission distance.

EML vs DML: What Are the Limits?

  • EMLs are more power-consuming as there is an electro-absorption modulator (EAM) integrated within the chip.

  • EMLs require a more complex electrical configuration and diode layout.

  • EMLs generally cost more as they use electric absorption to modulate signals.

  • There is high chromatic dispersion in DMLs because direct modulation changes the laser properties directly.

  • DMLs have a relatively low-frequency response and extinction ratio as they are all limited by the relaxation frequency.

  • Associated frequency shifts, coupled with dispersion in the fiber, cause the performance of a DML to degrade over longer reaches (>10km).

EML vs. DML: How Do They Differ from Each Other?

The above introduction to EML and DML shows they are quite different from each other. The following part will dig deeper and highlight their differences in key aspects.

Working Principle

DML is designed with a distributed feedback structure, and its waveguide has a diffraction grating to enable stable operation, thus realizing direct modulation. EML cannot have the laser directly modulated and mainly relies on an external modulator also called an electro-absorption modulator. The difference in working principles results in their different features and functions.

Key Parameters

The following figure shows how DML and EML stack up against each other across a number of key parameters.

Parameter DML EML
Speed Up to 100G 25G and higher
Reach 2-10km 10km and over
Market Maturity Mature More Advanced
Reliability Good Better
Extinction Ratio Good Better
Power Consumption 4.0W 4.5W
MSA Compliant Yes Yes

Use Case

Due to limitations such as greater chromatic dispersion and lower frequency response, DMLs are mainly used for relatively lower speeds (≤25Gbps) and shorter reaches (2-10km) applications in telecom and data centers.

By contrast, EMLs have an upper hand in applications with higher speeds and longer distance transmission, due to their smaller chromatic dispersion. They can operate at higher speeds with a much lower chirp, making them an ideal choice in high-performance long-haul coherent optical communication systems.

Naturally, EMLs are not an economical option in lower data rate (1G-10G) applications as they have a relatively higher cost.

use case of EML and DML

FS Transceivers Boost 100G/200G/400G/800G Migration

FS 100G/200G/400G transceiver modules are equipped with either DML or EML to enable high-speed data transmission of varying reaches from 500m to as far as 80km. To boost easy migration to 800G, FS 800G transceiver modules take full advantage of EML to handle distances from 500m to 10km. They prove to be a flexible and reliable choice for various applications in your diverse 100G/200G/400G/800G data center networks. The following two figures will all FS transceiver modules with either DML or EML.

Product Laser Type Distance
QSFP-CWDM4-100G DML 2km
QSFP-4W10-100G DML 10km
QSFP-PSM4-100G EML 500m
QSFP-FR-100G EML 2km
QSFP-LR4-100G EML 10km
Q28-100/112G-10 EML 10km
QSFP-DR-100G EML 500m
QSFP-FR-100G EML 2km
QSFP-LR4-100G-I EML 10km
QSFP-LR-100G EML 500m
QSFP-ER4L-100G EML 40km
QSFP-ZR4-100G EML 80km
QSFP-FR4-200G DML 2km
QSFP56-LR4-200G EML 10km
QSFPDD-XDR4-400G EML 2km
QDD-FR4-400G EML 2km
QDD-LR4-400G EML 10km
QSFPDD-PLR4-400G EML 10km
QDD-LR8-400G EML 10km
QDD-ER8-400G EML 40km
QDD800-DR8-B1 EML 500m
QDD800-2FR4-C1 EML 2km
OSFP800-DR8-B1 EML 500m
OSFP-2FR4-800G EML 2km
OSFP800-XDR8-B1 EML 2km
OSFP800-PLR8-B2 EML 10km

Conclusion

In summary, both EML and DML have their own pros and cons. They are able to bring out the best performance if used in the right application scenario. That said, you still need to take into consideration a number of factors such as network infrastructure and business budget before rushing into a decision.

You might be interested in

Knowledge
Knowledge
Knowledge
See profile for Sheldon.
Sheldon
Decoding OLT, ONU, ONT, and ODN in PON Network
Mar 14, 2023
381.1k
Knowledge
See profile for Irving.
Irving
What's the Difference? Hub vs Switch vs Router
Dec 17, 2021
365.4k
Knowledge
See profile for Sheldon.
Sheldon
What Is SFP Port of Gigabit Switch?
Jan 6, 2023
330.8k
Knowledge
See profile for Migelle.
Migelle
PoE vs PoE+ vs PoE++ Switch: How to Choose?
Mar 16, 2023
417.5k
Knowledge
Knowledge
Knowledge
Knowledge
See profile for Moris.
Moris
How Much Do You Know About Power Cord Types?
Sep 29, 2021
290.5k