Global 100G Optical Transceiver Market Analysis

Updated on Dec 11, 2021 by

100G transceiver

The introduction of 100G optical transceivers is pushing 100G networking for enterprise and data center applications into the mainstream market. Their adoption in short-reach links is progressing at an impressive speed, while the is also quickly maturing. Which primarily fuels the need for reliable, high-performance technological innovations. So how will 100G modules and the market evolve in coming years to keep up with the unprecedented data traffic? We will walk you through the technological advances in 100G transceiver modules, and offer some up-to-date information on 100G optical transceiver market.

Iteration of the 100G Optical Transceiver Technology

100G transceivers are being developed into smaller size, higher frequency and ultra-large capacity due to the insatiable need for networking bandwidth by hyperscale data centers and cloud services. Let's take a look at the advancement in 100G transceiver technology.

Smaller Form Factor

There are six leading 100G transceiver form factors on the market: the CXP, CFP, CFP2, CFP4, QSFP28 and CPAK, among which 100G QSFP28 modules, with the most compact size and lower power consumption, are the major 100G module of choice in data centers and enterprises. The specifications of each 100G transceiver are listed in the following chart.

Line Rates 40/100G 40/100G 40/100G 4×25-28G 12×12G or 10×12G 40/100G
Applications Ethernet, Sonet/SDH, OTN Ethernet, Sonet/SDH, OTN Ethernet, Sonet/SDH, OTN InfiniBand, Ethernet InfiniBand, Ethernet Ethernet, Sonet/SDH, OTN
Dimension (W×L×H mm) 82×145×14 41×104×13 22×92×10 18×52×1.5 21×92×10 34.8×101.2×11.6
Electrical Interface CAUI, XLAUI, SFI-S, SFI-5.2 CAUI-4, CAUI CPPI-4 CPPI-4 12×QDR InfiniBand or CPPI CAUI-4, CAUI
Connector 148 pads 104 pads 56 pads 38 pads 84 pads N/D
Max Power 8-32W 3-18W 1.5-6W 3.5W 6W N/D

More Integrated Chips

The optical transceiver chip is an integrated circuit (IC) that transmits and receives data using optical fiber. It is the heart of an optical transceiver and remains a technical barrier that manufacturers find hard to get over. Typically, the chip of an optical transceiver is made using specialized semiconductor materials. However, large consumption of optical transceivers in networking, in particular cloud applications, is calling for higher transceiver performance, advanced modulation and long-distance transmission. The silicon photonics optical transceiver is expected feasible to reduce size, increase integration density and lower transceiver power consumption. 100G silicon photonics products including 100G PSM4 and 100G CWDM4 are commercially available to facilitate single-mode transmission, and the deployment of these transceivers will keep growing in data centers and cloud applications.

More Simplified Packaging

Compared with other packaging technologies, the COB (chip on board) is more widely used in high-rate multimode 40G/100G data center optical transceiver module since it helps to achieve smaller form factor and higher density. COB is a non-hermetic package, and it applies the rubber patch technology (epoxy die bonding) to fix chips or optical components on the PCB, and then gold wire bonding uses electrical connection, then drip glue sealing on the top. The prominent advantage of COB packaging is that it can be automated and used to package integrated silicon photonics with cost reduction, lower production precision requirements and less physical space.

100G Optical Transceiver Adoption Reaches Prime Time

100G optical transceiver manufacturers compete to refine the product and push its versatility, and the continued adoption of 25GE between servers and ToR switches will push adopters of 25GE to upgrade to 100GE. 100G switch port shipments will outnumber 40G switch port shipments—as 25G server and 100G switch became commonplace in most hyperscale data centers that replace previous 10G servers and 40G switches.100G transceiver modules deployment is growing sustainably and has now become the fastest Ethernet connections in broad adoption. On the contrary, The market for 40GE has seen a shift to shrink rapidly while the demand for 10GE will only see flattish growth. It is predicted that 40G will be only deployed if 100G cannot be used due to technical or compatibility issues or low cost. With that being said, 100G optical modules will continue to remain strong as the supply bottleneck is getting resolved.

100g optical transceiver market trend.jpg

By a small number of key customers coupled with a large number of suppliers competing for 100G transceiver orders, it will undoubtedly drive down the cost of 100GE modules, making the cost difference between 40G and 100G even small.

100g optical transceiver price.jpg


The exponential growth of information technology (IT) data is yielding significant growth in demand for high-speed transmission and technology upgrades. For the hyperscalers and cloud builders, 100GE is nowhere near enough bandwidth, so 200/400GE might be the choice that organizations might plan for in the years to come. The information on 100G trends and developments in the article simply offers a reference, hopefully it would help facilitate your decision-making on buying 100G optical transceivers or upgrading your network infrastructure.

Related Article: Global Optical Transceiver Market: Striding to 200G and 400G


You might be interested in

See profile for Sheldon.
Decoding OLT, ONU, ONT, and ODN in PON Network
Mar 14, 2023
See profile for Irving.
What's the Difference? Hub vs Switch vs Router
Dec 17, 2021
See profile for Sheldon.
What Is SFP Port of Gigabit Switch?
Jan 6, 2023
See profile for Migelle.
PoE vs PoE+ vs PoE++ Switch: How to Choose?
May 30, 2024
See profile for Moris.
How Much Do You Know About Power Cord Types?
Sep 29, 2021